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In this note we analyze the topology of the moduli spaces of configurations in the
plane or three space of all linearly immersed polygonal circles with either fixed lengths for
the sides or one side allowed to vary. Specifically, this means that the allowed maps of an
n-gon 〈l1, l2, . . . , ln〉 where the li are the lengths of the successive sides, are specified by
an ordered n-tuple of points in R2, P1, P2, . . . , Pn with d(Pi, Pi+1) = li, 1 ≤ i ≤ n−1 and
d(Pn, P1) = ln. A similar definition holds in R3. We show that these configuration spaces
are the boundaries of manifolds built out of unions of specific products (S1)H × In−1−H

for the plane, or (S2)H × I2(n−1−H) for three space, over (specific) common submanifolds
of the same form. Once the topology is specified, it is indicated how to apply these results
to motion planning problems.

§1. Introduction

Polygonal circles in R2 or R3 with n-edges are called n-bar mechanisms in mechanical
engineering, and they often arise with one of the edges fixed. In the latter case they are
called closed (n− 1)-chains. The space of configurations, particularly in the case of closed
chains, is very important in areas like robotics where motions of these mechanisms from
an initial position to a final position - often with special constraints like avoiding certain
points or some self-intersections - are objects of essential interest. We will describe these
connections and related problems in §2.
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Figure 1: Five bar mechanism with one prismatic joint

The Euclidean group of (oriented) rigid motions, SEk = Rk:SO(k), for k = 2, 3
(where H:G is the semi-direct product and the action of SO(k) on Rk is the usual one)
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2 Closed Chains in Two and Three Dimensions

acts on these configuration spaces. If we mark an edge and initial point on that edge, the
action will bring the image of that edge to a fixed segment, say, for definiteness the segment
starting at the origin and lying on the positive x-axis. This action is not necessarily free
in R3 but it is free in R2. Thus it identifies the configuration space of the n-bar

B(l1, . . . , ln) = {f : 〈l1, l2, . . . , ln〉−−→R2}

in R2 with a principal fibration

R2:SO(2)−−→B(l1, . . . , ln)−−→C(l1, . . . , ln−1|ln)

where C is the configuration space of an associated closed (n− 1)-chain with base edge of
length ln.

To describe the moduli spaces of these maps we identify two such maps if and only
if they only differ by the action of an element in these oriented affine groups. For config-
urations of n-bars or closed chains in R3, after fixing the image of the base edge we still
are allowed to rotate the configuration about the line through Pn and P1. This gives us
an S1 action on the configuration space of the closed chain (which, generically, is free, but
is always semi-free, that is to say the orbits are either free or fixed under the S1-action)
with the fixed point set consisting of a finite set of isolated points - those folded chains
where all the segments are co-linear. Thus, generically, the projection of the configuration
space of a closed chain in R3 to the corresponding moduli space is a principal S1-fibration.
(In [KM2] it is shown that in the generic case where the action of R3:SO(3) is free, the
quotient manifold has a complex structure. From this it can be shown that the map of
the space of configurations where the last edge is mapped to a ray starting at the origin
and lying on the positive x-axis to the associated quotient space is a principal S1-fibration
associated to a complex line bundle.)

Remark 1.1: For R2 we can extend the action to the group of all rigid motions. In this
case, generically, the projection of the configuration space of the closed (n − 1)-chain to
the moduli space is a principal Z/2-fibration.

Remark 1.2: For both R2 and R3 the configuration spaces depend only on the lengths
l1, . . . , ln and not on their order up to homeomorphism. Also, in the case where all the
lengths are fixed, if we rescale by multiplying all the lengths by the same non-zero constant
λ the configuration spaces and moduli spaces are again homeomorphic. Consequently, we
can assume that

∑n
1 li = 1, all the li > 0, and if we wish, that the lengths are given in

increasing order. Unless otherwise stated this convention will be in force for the remainder
of this note whenever we discuss the situation where all the lengths are fixed.

Definition 1.3: Assume that the li are normalized as above. Then we say that the subset
V = (li1 , li2 , . . . , lir ) consists of long links if and only if the sum of any two lengths in V
is greater than 1

2 . The cardinality of V can be at most three.

The following lemma appears in [KM1] and shows that no real n-bar can have only one
long link:
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Lemma 1.4: The ordered sequence 〈l1, l2, . . . , ln〉 with
∑n

1 li = 1 and li > 0 for all i, has
a non-empty configuration space in R2 if and only if each li ≤

1
2 .

(The proof is elementary. The result is verified for n = 3 and then the proof for n > 3 is
a direct induction when one observes that for n > 3, there must be two lengths li, lj with
li + lj < 1

2 .)

Sometimes these moduli spaces of configurations will have non-manifold points, but
generically, they are manifolds. The conditions for singularity are precisely described in
[KM1] and will be reviewed in §4, §5. Here is our first main result.

Theorem 1.5: Let M be a closed (n− 1)-chain with lengths

l1, l2, . . . , ln−1

and base length ln.

(a) Except for a finite number of ln, C(M) is a closed compact manifold of dimension
(n− 3) for R2 and (2n− 5) for R3.

(b) Whenever C(M) is a manifold, it is the boundary of a manifold W n−2 for R2 or
W 2n−4 for R3 which is given as a union of sub-manifolds of the form

(S1)s × In−s−2 for R2, (S2)s × (I2)n−s−2 for R3.

(The set of s that occur depend on the lengths in a fairly direct way.)

Figure 2: The (coordinate) union of two copies of S1 × I

This union is constructed as follows. Whenever two such pieces intersect, their intersection
is a common (coordinate) sub-manifold of the form (S1)l×In−l−2 for R2 or (S2)l×I2(n−l−2)

for R3.

Here, coordinate sub-torus simply means that we fix a finite number of the product coor-
dinates in (S1)n−1 for R2 or (S2)n−1 for R3 and allow the remaining points to vary over
all possible values. Also, the structure of this finite union of sub-tori (or products of S2’s)
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is entirely explicit, consisting of a finite number of maximal sub-tori together with all their
possible intersections, and the set of maximal sub-tori is given in the body of the paper
as a combinatorial function of the lengths.

Remark 1.6: In specific cases, it is quite direct to determine the exact structure of these
Wn−2 or W 2(n−2).

Examples 1.7: We give some examples for R2. The situation is similar in R3.

(a) If all the li, i < n, are equal, then the only possible W n−2 are thickenings of the full
s-skeleton of (S1)(n−1) for s ≤ [(n− 1)/2].

(b) If there are three long edges, the thickening is

(S1)n−3 × I.

(c) If there are two long edges, the space C(M) is the double over the boundary of one
of these thickenings, more exactly:

Theorem 1.8: Suppose all the edges have fixed length, suppose that the assumptions of
the above theorem are satisfied, and suppose, moreover, that there are two “long edges”,
li and lj , (i 6= j), so that li+ lj > 1

2 . Then the configuration space for the associated n-bar
mechanism is the double along the boundary of a thickening having the type described in
the previous theorem for R2.

(d) Remark 1.9: The description of the associated configuration spaces in R3 is some-
what more complicated, though it is still a double.

(e) In the general case, the moduli space of configurations of a fixed-length n-bar mecha-
nism in the plane is the double of a thickening of the type above minus the thickening
of a neighborhood of a union of coordinate sub-tori contained in it. But these differ-
ences of thickenings are, themselves, the moduli spaces of embeddings when one edge
is allowed to vary in length between two fixed values, 0 ≤ a < l1 < b.

Figure 3: Thickenings with boundaries C-spaces for 4-bars
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Figure 4: The differences of the thickenings above

Moreover, from the description above, the intersection pairing is easily described in
any specific case, so the homology structure of the C(M) can be regarded as completely
known for any closed chains in R2 with no obstacles.

These thickenings are also the building blocks for constructing the configuration spaces
themselves in the case of R2. In fact, the configuration spaces for fixed-length mechanisms
are simply doubles along the boundary of a certain associated W n−2 or the difference of
two such, Wn−2 and W ′(n−2) ⊂Wn−2. On the other hand, these differences are precisely
the configuration spaces of mechanisms where the length of exactly one edge is allowed to
vary between two finite values

0 ≤ l(0) ≤ ln ≤ l(1) ≤
n−1
∑

1

lj ,

and this is true for both R2 and R3.

Remark 1.10: It is also possible for the mechanism to have three long edges li, lj , lk so
that the sum of any two is ≥ 1

2 , though it is not possible to have four long edges. In the
case of three long edges we have the important result, [KM1]:

Theorem 1.11: For configurations of an n-bar mechanism with fixed lengths in R2 the
configuration space is connected if and only if the mechanism does not have three long
edges. Moreover, in the case where the mechanism does have three long edges, then the
configuration space has exactly two components and each component is a torus (S1)n−3.
(In R3 the moduli space is always connected.)

The explicit descriptions of the configuration spaces given above allow for very efficient
motion planning in these thickened regions or differences of thickened regions. Specifically,
when the topology of the region is sufficiently well understood, it is possible to construct
efficient (piecewise geodesic with very few breaks) paths in polynomial time, (roughly vn4)
where v is a constant that depends on the specific configuration space.

Also, the determination of the relevant aspects of the topology of these regions can be
done in roughly 23n steps (which is best possible in general, though when there are very
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few distinct lengths, the number is much smaller). Of course, this latter calculation need
only be done once.

The authors have used these results to develop a complete program for motion plan-
ning for closed chains that works in polynomial time independent of whether the topology
is well understood. The trade off is that these paths may be quite far from optimal. (Here
complete means that if it is possible to find a path from the initial configuration to the
final configuration, the program will construct one, and if it is not possible, the program
will report this as well.)

These closed n-chains are a special family of linkages. Over the years, quite a num-
ber of papers have been written that deal with aspects of the problem of determining
the configuration spaces and moduli spaces of linkages. It is known, as was shown by
Thurston (unpublished, but see [KM3]), that the complexity of the full subject is that of
real algebraic geometry, though, as the results above show, the situation becomes much
more manageable when we restrict to special families. Most recently the results of [KM1],
[KM2], [KM3], provide a good review of previous work and give a number of interesting
results on the structure of these configuration spaces, particularly the configuration spaces
for closed chains in R2 and R3.

In further work, the authors expect to discuss extensions of the results above to
configuration spaces for closed chains in the presence of obstacles and constraints. Also,
we would like to thank Steven Kaufman for all the help and encouragement he gave us
throughout the development of these results.

§2: Background

Kinematics is the study of the possible motions of systems of bodies coupled me-
chanically through contact constraints. These constraints can be permanent, as in the
case of a hinge joint, or intermittent, as in the case of a ratchet mechanism. A common
problem in mechanism design is to choose the number of links and their lengths, twists,
and offsets, so as to allow a particular link to move (relative to a given base link) from one
configuration to another, possibly following some specified rigid body motion. Currently,
this design problem is solved taking little or no advantage of the structure of the space of
configurations of the mechanisms under consideration. While some research results that

leverage global structure of the configuration spaces have appeared in the literature †,
common design practices still tend to rely on iterative numerical procedures that use only
local information. As a result, the design process for mechanisms with even small numbers
of joints is tedious.

In the design of common one-degree-of-freedom mechanisms, such as the four-bar
linkage and crank and slider mechanisms, [H], current design tools are reasonably powerful
and efficient. However, the field of robotics has been placing increasingly difficult demands
on mechanism designers. Most robotic applications require more degrees of freedom from
mechanisms than current design tools can readily handle. One challenging class of robotics

† For example, Shukla and Mallik, [SM], developed a method to determine the existence
of a crank (a link that can rotate 360o relative to some other link in Watt and Stephenson
chains (six-bar, planar mechanisms with two loops)).
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problems requires the motion planning and control of a closed-chain mechanism with many
degrees of freedom. For example, a bomb-disposal robot must be capable of moving to
a door (behind which is a bomb), and opening it. While the robot is opening the door,
a closed kinematic chain is formed that is composed of the robot arm and the door,
connected to the ground at either end. To open the door, one must understand the
constraints imposed on the system by the kinematic loop and be able to plan the motion
of the system from an initial state (the door is closed) to a goal state (the door is fully
open).

Despite the fact that bomb-disposal and many other robotic tasks require good de-
signs and motion planning for closed kinematic chains, the state of the art is surprisingly
crude. The most effective robot motion planners today are built upon randomized search
techniques. [KLOS], [WXH]. However, individual randomized techniques have wildly vary-
ing performance and are not complete; they are not guaranteed to find a solution when
one exists, nor can they determine that a solution does not exist when that is the case.
The theoretical basis for a complete general motion planner was developed roughly 15
years ago, [C], but it has never been implemented due to the complexity of the specified
algorithms.

The work presented here represents a first step in the development of maximally
efficient, complete motion planners for robotic mechanisms. More importantly, the work
expands the field of theoretical kinematics. Previously, the only mechanisms for which the
global properties of configuration space were understood, were those of planar mechanisms
with very small numbers of joints (e.g., the four-bar mechanism). Here we completely
determine the global structure of configuration spaces of spatial n-bar mechanisms, where
n is arbitrary. The class of mechanisms considered are those forming a single closed loop.
For planar mechanisms, all joints are of the type know as “revolute” (i.e., hinge joints);
they constrain adjacent links in the loop allowing only relative rotation about the axis
of the joint. For spatial mechanisms, all links are connected by “U”-joints (i.e., pairs
of revolute joints with intersecting axes). In addition, one link is allowed to change its
length (i.e., the mechanism may have one prismatic joint). While our analysis allows self-
intersection of the links, once the associated configuration space is understood, there are
standard methods in topology for dealing with restrictions on the embeddings so that, for
example, there are no self-intersections or the mechanisms do not intersect given closed sets
in R2 or R3. We will not discuss these techniques here, but expect to do so in subsequent
work.

§3: Planning Paths in the Configuration Space

Briefly, assume that we are given two points, A and B, in the configuration space of a
closed chain in Rk, k = 2 or 3, with the last edge based at ~0 and lying on the x-axis. Then
the space of paths from A to B is homotopy equivalent to the loop-space Ω(B(l1, . . . , ln))
(if A and B lie in the same path-component) or it is empty. Consequently, for n ≥ 4, if
the path space is not empty, then there are many ways of moving from A to B. Given
the non-uniqueness of paths and the huge difficulty, in general, of determining geodesics
between A and B, one must identify the most important path attributes to guide their
construction.
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If any path between A and B will do, then one may proceed a step at a time. Using
1.11, we can check whether we are dealing with a path connected space or one that has
two components. If there are two components, then they are distinguished by the relative
positions of the three long links. For example, if the long links are l2, l3 and l4 (as in
Figure 5), then {l3} will be in one half-plane or the other relative to l4.

........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................•

•

•

•
l1

l3

l2

(l4)
P1

P2

P3

P4 ........................................................................................................................
......
......
... ........................................................................................................................

......

......

...

...............
...............

...............
...............

...............
...............

...............
...............

......

.......
................................... ......

.......
...................................

Figure 5: A four-bar mechanism with three long links.

Since in the case of two components, the short links are free to move in any way, the
configuration space is comprised of two tori. Hence the motion planning algorithm here is
very simple, determine if A and B are in the same component and, if so, move the short
links in a straight line on the torus from their configuration for A to their configuration
for B.

In the case of a single path connected component, one can simply move one link after
another into the correct position, and then fix it. Having fixed a link, we can lump it with
the old base link to form a new base link leaving a closed chain with one less link. The next
move will be from the configuration just achieved, Ak, to the original goal configuration,
B. Before beginning the next move, however, one checks the number of components in
configuration space of the reduced chain. If there are two components and Ak and B
are in the same component, proceed as in the previous paragraph. If they are not in the
same component, we adjust the previous move to ensure that the long links move into the
correct relative position before moving the next link into its correct final position.

Such algorithms take advantage only of our knowledge of the path components and
our ability to detect which component contains a given configuration. But we also know
much more about the geometry and topology of the configuration space than just the
components. It turns out that the tori T s × pt ⊂ T s × In−s−2 in our W ’s are very close
to geodesic, so when design constraints permit, it is quite efficient to locate one of these
tori close to A, another close to B. This done, one can plan the path by constructing a
path in the poset of the T s from the first torus to the other. Of course, this requires that
one do a potentially very long analysis of a certain set of critical radii given explicitly in
the statement of 5.1. Algorithms for doing this can be extracted from the discussion that
follows 7.8.

§4: Constructing Configuration Spaces of Closed Chains
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In this section we restrict ourselves to R2. It is direct to extend the discussion to R3

however. Also, before we do the analysis of the closed situation, we consider open chains
(where one end-point is allowed to vary but the other is fixed).

For open chains the structure of the configuration space is clear: a chain’s configura-
tion is determined by the successive angles between the edges, and between the base edge
and some fixed ray emanating from the base-point. Consequently, the configuration space
of an open chain with m segments is just the m-torus (S1)m.

We also need to consider the workspace of an open chain. This consists of all the points
in the plane that occur as the image of the free end-point of the chain. For example, in the
case of an open chain with two unequal edges the workspace is always an annulus centered
at the fixed end-point, with outer circle of radius l1 + l2 and inner circle of radius |l1− l2|.

......

......

......

......

......
......
......
......
.......
.......
.......
.......
........
........
........
.........

..........
...........

..............
....................

.......................................................................................................................................................................................................................................................................................................................................................................................................................................................
................

............
...........
.........
.........
........
........
.......
.......
.......
.......
.......
......
......
......
......
......
......
......
.......

......

......
.......
.......
........
...........

........................................................................................................................................................................................
..........
........
.......
.......
......
......
....l1 + l2 |l1 − l2|

Figure 6: Annular Workspace for Two-Edge Linkage

Here, it is also worth noting that there are exactly two configurations with a given end-
point as long as the end-point is in the interior of the annulus, while the configurations on
the boundary circles occur only when the two edges lie on a single line through the base-
point. In the case where the two edges have equal length the workspace is the entire disk
of radius 2l1, but the inverse image of the base-point in the configuration space consists
of an entire circle.

In the case of an open chain with a single edge of length l, the workspace is just the
circle of radius l centered at the base-point, while the workspace for a general open chain
with at least three links is either the closed annulus or the closed disk centered at the
origin. In both cases the outer radius will be

∑

i li.

Let us consider the configuration space of closed chains with three segments, i.e.,
planar 4-bar mechanisms. To do this we consider simultaneously an open chain with one
edge of length l3 based at P4 and an open chain with two edges of lengths l1 and l2, based
at P1. Assume, for the moment that P1 and P4 are further apart than l1 + l2 + l3, so there
is no configuration of the closed chain that connects P1 and P4. Then start moving P4

towards P1 till the edges of the workspaces touch as shown in Figure 7:
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Figure 7: Workspaces Just Touching

l3 l2 l1

P4 P1

Now there is a single solution – the three edges lie along the line containing P1 and P4.
Continue to move P4 towards P1, so the intersection of the workspaces is an arc whose
interior is completely contained in the interior of the annular workspace of the 2-chain.
At each interior point ~v of the arc there are exactly two configurations of the 2-chain at
P1 with ~v locating the free end-point. At each end-point of the arc there is only one
configuration of the 2-chain. Consequently, for the region defined by

l1 + l2 > ||P1 − P4|| − l3 > |l1 − l2|

(provided that ||P1 − P4|| > l1 + l2 − l3) the configuration space is simply a circle. (Four-
bar mechanisms satisfying the condition that their configuration space is a single circle
are referred to as non-Grashof in the engineering literature.)

The configuration space continues to be a circle as P4 moves towards P1 until either
the arc of intersection touches the interior circle of the annulus (or P1 when the interior
circle is degenerate, i.e., l2 = l1), (which will occur if 2l3 > |l1 − l2|)
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Figure 8: Workspaces Just Touching at Inner Boundary

or the intersection becomes the entire circle, with one point tangent to the outer circle
of the annulus (which can only happen if 2l3 < |l1 − l2|). Mechanisms with this type of
configuration space are known in the engineering literature as uncertain since the inverse
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image of motion through the singular point given by three colinear links bifurcates.
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Figure 9: Workspace Contained and Touching Outer Boundary

In both these cases the configuration space becomes a figure 8, while in the degenerate
case (occurring when 2l3 = |l1 − l2| > 0), we find that the configuration space becomes
the following graph:
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Figure 10: Three Loop Graph With Two Vertices

The remaining case occurs when the arc becomes tangent to the inner and outer
circles of the annulus simultaneously and, the inner circle degenerates to the point P1,
i.e., l1 = l2 = l3. In this case the configuration space is a three vertex, six edge graph,
with four edges incident on each vertex.

As P4 continues to move towards P1 various possibilities now occur. The two most
important are represented in continuing the situations in both Figure 8and Figure 9, where,
in two different ways - as the circle crosses the inner radius in Figure 8, or becomes entirely
contained in the interior of the annulus for Figure 9- the configuration space becomes two
disjoint circles. In the engineering literature, this is referred to as Grashof, and represents
the usual way in which four-bar mechanisms are applied.

The reader can easily list the remaining possibilities. A similar analysis can be done
for five bar mechanisms, and such an approach is discussed in [KM1]. There are exactly six
non-singular closed surfaces that appear as configuration spaces for 5-bar mechanisms, the
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surfaces of genus ≤ 4 and the disjoint union of two copies of the torus S1 × S1. However,
as the number of bars increases, this approach becomes too complex, and we need more
systematic and powerful methods.

§5: Generic points for the map to the workspace

The considerations above indicate that it should be possible to “bootstrap” from
n-bars to (n + 1)-bars, provided we understand the entire configuration space for the
lengths l1, l2, . . . , ln−1 in the sense that we know the inverse image of any point in the
workspace. In doing this, we introduce the intersection of the circle of radius ln and the
workspace, provided that the center of this circle is at distance ln+1 from the origin. Then
the configuration space of the (n+ 1)-bar is the inverse image of this intersection.

Also, the considerations above indicate that there are certain critical circles in the
workspace, those circles where the inverse image contains a configuration with all the edges
colinear, and that the inverse image will be non-singular unless the circle of radius ln is
tangent to one of these critical circles.

Both of these results are true. In fact, even more is true. If we choose an initial point
on the circle and take the (signed) distance on the component of the intersection of the
circle of radius ln with the workspace that contains the initial point, as a function on the
inverse image of the configuration space, then this function is locally Morse, with all its
critical points contained in the inverse images of the intersection of this circle with the
critical circles in the workspace.

Here are the basic results.

Theorem 5.1: Let ~q be any point in the workspace of the open chain with lengths

〈l1, l2, . . . , ln〉,

then the inverse image of a point p in the torus (S1)n is an (n− k) dimensional manifold
(where k = 2 if we are in R2 and k = 3 if we are in R3) if and only if p is not on
one of the circles (spheres), centered at the center of the workspace having radius RI =
|
∑

li − 2
∑

j∈I lj | where I ⊂ {1, 2, . . . , n} is any subset.

Theorem 5.2: Suppose that ~0 is not a critical circle (sphere). Suppose that P (x, y) = 0
or {g(x, y, z) = h(x, y, z) = 0}, depending on whether we are in R2 or R3, defines a C∞

rectifiable curve γ in the workspace. Then the inverse image of γ is non-singular if and
only if γ is transverse to each of the critical circles (spheres) that it intersects.

(Here the critical circles and spheres are the spheres described in the result above.)

Corollary 5.3: Let RI and RJ be adjacent critical radii, and W (I, J) the open annulus
(in R2) or open spherical shell (in R3) between them, then the map of the inverse image
of W (I, J) onto W (I, J) is a trivial fibration.

As a consequence, if the curve γ lies entirely in one of the W (I, J), then the inverse
image of γ is also a product I × V where V is the inverse image of an arbitrary point in
W (I, J), and it follows that any two γ which lie entirely in W (I, J) have diffeomorphic
inverse images.

Theorem 5.4: Suppose that the curve γ in the workspace satisfies the properties above
for non-singularity of the inverse image, and, again, ~0 is not a critical circle (sphere). Then
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arc length on γ is locally a Morse function with critical points exactly the points in the
inverse images of γ intersected with the critical circles (spheres) where all the edges are
co-linear.

In the next two sections we give the proofs.

§6: The proofs of the general position theorems above

We now give a proof of these facts in three dimensions, though the arguments are
virtually identical (but more direct) in two dimensions.

Lemma 6.1: The map f which sends an open chain with lengths l1, . . . , l(n−1, based at 0 to
its endpoint has as its critical points precisely the spheres centered at the origin of radius
|
∑n−1

i=1 (−1)
ei li| where the (n − 1)-tuples (e1, . . . , e(n−1)) run over all 2(n−1) possiblities

with each ei ∈ {0, 1}.

Example 6.2: If (l1, l2, l3, l4) = (1, 1.5, 2, 3) then there are exactly six critical radii,
.5, 1.5, 2.5, 3.5, 4.5 and 7.5 with 1.5 and 2.5 occuring in four distinct ways, and each of
the others in 2 distinct ways.

Proof: We consider chains in three dimensions given in the form of the following set of
equations:

x2
i + y2

i + z2
i = 1, 1 ≤ i ≤ n− 1

n−1
∑

1

lixi = 0

n−1
∑

1

liyi = 0

n−1
∑

1

lizi = ln

The first set of constraints defines the product (S2)n−1, which is non-singular and has
tangent space just the product of n − 1 copies of the tangent space to S2. Precisely, the
space of tangent vectors at the point ( ~X1, . . . , ~Xn−1) is the set of all vectors ( ~P1, . . . , ~Pn−1)

with ~Pi ⊥ ~Xi, 1 ≤ i ≤ n− 1, ~Pi ∈ R3. The map (forward kinematics map)

6.3 f : ( ~X1, . . . , ~Xn−1)−−→R3

defined as f( ~X1, . . . , ~Xn−1) =
∑

li ~Xi induces the tangent map

6.4 df : ( ~P1, . . . , ~Pn−1) =
∑

li ~Pi

and this map is onto except when the tangent spaces to the different ~Xi are all the same,
which happens if and only if ~Xi = ± ~X1, 1 ≤ i ≤ n− 1.

Thus, if the point





0
0
ln



 does not lie on one of the critical spheres, it is a regular

point, and conversely.
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Corollary 6.5: Let V be the open annular region between two of successive critical
spheres in the situation above. Then the inverse image of V is the product V × f−1(v0)
for any v0 ∈ V .

Proof: The action of the orthogonal group O3 based at the origin, preserves the map f ,
but since there are no critical points in V and the inverse image of every point is compact,
it follows that the map is a fibration.

Let γ be any rectifiable curve embedded in the workspace, and suppose that W is the
inverse image of γ under f .

Corollary 6.6: Suppose that either ~0 is not a critical radius or that γ does not contain
~0. Then W is a differentiable manifold if and only if γ intersects each critical sphere
transversally. Moreover, if W is differentiable, and γ satisfies these assumptions, then the
set of critical points of the composition of the length function on γ with f on W is exactly
the set of ( ~X1, . . . , ~Xn−1) ∈W where all the ~Xi are colinear.

Proof: We assume that the end of the chain is constrained to run along a curve given in
a small neighborhood of point of interest, which we assume is on a critical sphere, by the
pair of equations

p(x, y, z) = 0

q(x, y, z) = 0.

Setting x =
∑

lixi, y =
∑

liyi, z =
∑

lizi, putting

Ax =
∂p

∂x
Ay =

∂p

∂y
Az =

∂p

∂z

and similarly

Bx =
∂q

∂x
By =

∂q

∂y
Bz =

∂q

∂z

we have that the tangent line to the curve at ~X is the kernel of the Jacobian matrix

6.7 Jγ =

(

Ax Ay Az

Bx By Bz

)

.

Also, the derivative of the length function is the dot product of the unit tangent vector in
the direction of increasing s with the image of df from τ(W ) to τ(γ).

We have that the Jacobian for the resulting variety W near f−1( ~X) is given as

6.8 JC =













2x1 . . . 0 2y1 . . . 0 2z1 . . . 0
...

. . .
...

...
. . .

...
...

. . .
...

0 . . . 2xn−1 0 . . . 2ym 0 . . . 2zn−1

Axl1 . . . Axln−1 Ayl1 . . . Ayln−1 Azl1 . . . Azln−1

Bxl1 . . . Bxln−1 Byl1 . . . Byln−1 Bzl1 . . . Bzln−1













Looking at the restriction of this matrix to the tangent vectors to (S2)n−1 we get image
vectors of the form









0
...
0

Jγ
∑

li ~Ti








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with (~T1, . . . , ~Tn−1) in the tangent space at ( ~X1, . . . , ~Xn−1). The only way the rank of this

image can be less than full is if all the ~Ti lie in the same plane, and the tangent to γ lies
in this plane as well.

On the other hand, at a point where all the ~Xi are colinear, the tangent plane is the
kernel of JC , and this is the set of vectors which are, first ⊥ ~X1, and second, annihilated
by Jγ . But since Jγ restricted to ⊥ ~X1 is an isomorphism, this shows that the tangent
space at this critical point is exactly the space of (n− 1)-tuples

[

(~T1, . . . , ~Tn−1)
∣

∣

∣

~Ti ⊥ ~X1,
n−1
∑

1

li ~Ti = ~0

]

.

Thus we have identified the critical points of f restricted to f−1(γ) as the set of elements

in f−1(γ) where all the ~Xi are colinear.

Thus we have shown that under the assumptions above, the length function sγf
restricted to W has isolated critical points. It remains to analyze the Hessian at these
critical points to prove that this function is Morse.

We do this in the case of R2, the case of R3 being similar.

We assume that w1, . . . , wn−2 are the local coordinates where wi is the angle that the

ith segment makes with the x-axis, and wn−1 = wn(w1, . . . , wn−2). Then, if ~Xi =

(

xi
yi

)

and ~X =
∑n

1 li ~Xi we have

∂2

∂w2
i

X = −li ~Xi − ln−1
∂wn−1

∂w2
i

~Xn−1

while
∂2

∂wi∂wj

~X = −ln−1
∂wn−1

∂wi∂wj

~Xn−1

for i 6= j. Consequently, since we are at a critical point and the ~Xi, i = 1, . . . , n are all
co-linear, the determination of the Hessian matrix reduces to the determination of the

second derivatives ∂2wn

∂wi∂wj
and the specification of a sign for each ~Xi. We omit the details

of this calculation as they are direct and record only the result: The Hessian matrix, H,
at the critical point becomes









(−1)j(2)l2lj + l22 (−1)j(2)+j(3)l2l3 . . . (−1)j(2)+j(n−2)l2ln−2

(−1)j(2)+j(3)l2l3 (−1)j(3)l3lj + l23 . . . (−1)j(3)+j(n−2)l3ln−2

...
...

. . .
...

(−1)j(2)+j(n−2)l2ln−2 (−1)j(3)+j(n−2)l3ln−2 . . . (−1)j(n−2)ln−2lj + l2n−2









Lemma 6.9: The Hessian above is non-singular if and only if the sum

Kn−1 =
n−1
∑

1

(−1)j(i)li
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is non-zero. In this case, if the intermediate sums Kk =
∑k

1(−1)
j(i)li are all non-

zero, then the index of the Hessian is ± the number of sign changes in the sequence,
(−1)j(1)+j(2)+···+j(k)Kk for 1 ≤ k ≤ m. (Explicitly, the first few terms of the sequence
are l1, (−1)j(1)+j(2)((−1)j(1)l1 + (−1)j(2)l2), (−1)j(1)+j(2)+j(3)((−1)j(1)l1 + (−1)j(2)l2 +
(−1)j(3)l3).)

Proof: In a neighborhood of the critical point write θi =
π
2 (1− (−1)j(i)) + (−1)j(i)δi, so

the δi become local coordinates. We assume that δ1 can be given in terms of the remaining
coordinates, and set

V t = (δ2, δ3, . . . , δn−1),

C =













(−1)j(2)l1l2 0 0 . . . 0
0 (−1)j(3)l1l3 0 . . . 0
0 0 (−1)j(4)l1l4 . . . 0
...

...
...

. . .
...

0 0 0 . . . (−1)j(m)l1ln−1













and

RRt =









l22 (−1)j(2)+j(3)l2l3 . . . (−1)j(2)+j(n−1)l2ln−1

(−1)j(2)+j(3)l2l3 l23 . . . (−1)j(3)+j(n−1)l3ln−1

...
...

. . .
...

(−1)j(2)+j(n−1)l2ln−1 (−1)j(3)+j(n−1)l3ln−1 . . . l2n−1









where Rt = ((−1)j(2)l2, . . . , (−1)
j(n−1)ln−1). Then the Hessian G can be written G =

[C + (−1)j(1)RRt]. Now G is a symmetric matrix, and, since all the diagonal minors of
RRt are 0 if they are at least 2× 2, it is easily seen that the determinant of the diagonal
minor in G which involves the first k − 1 rows and the first k − 1 columns is given as

(−1)j(1)+j(2)+···+j(k)lk−2
1 l2 · · · lk

k
∑

v=1

(−1)j(v)lv.

Explicitly, the sequence of diagonal minors of G is

6.10

(−1)j(1)+j(2)l2((−1)
j(1)l1 + (−1)j(2)l2)

(−1)j(1)+j(2)+j(3)l1l2l3((−1)
j(1)l1 + (−1)j(2)l2 + (−1)j(3)l3)
...

¿From this the result is immediate when we note that the signature of a symmetric non-
singular matrix is given in terms of the sign of the first diagonal minor, and from then on
the changes of sign in the diagonal minors above as k increases.

§7: The structure of inverse images of curves

It turns out that we do not need the exact index of these critical points. What matters
is how many of them there are in the inverse image of a given path in the workspace. But
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before we get into these details we need to make a few remarks about the dependence of
these inverse images on the particular path, γ.

Throughout this section we assume that the inequalities among the l1, . . . , ln required
for the non-singularity of all the critical points are satisfied.

By assumption γ is differentiable with transverse intersections with the critical point
circles (spheres) of the map from the (free) configuration space to the workspace. Assume
that γ has been parameterized by (scaled) arc-length and is thus given by a (unique)
differentiable map I−→W (l1, . . . , ln). It follows that the union of these intersection points
forms a discrete labeled configuration of points in I, where the labeling is by the radius of
the particular critical sphere containing the image. Clearly, there is a single constraint on
this set - adjacent labeled points must either be labeled by the same radius or by the next
larger or smaller radius. But aside from this constraint any finite, discrete configuration
of labeled points can arise. We call the resulting labeled configurations that actually arise
admissible configurations. All the admissible configurations are naturally ordered via the
natural ordering of the inverse images of the critical spheres in I, and thus, associated to
each admissible configuration there is a unique ordered sequence of radii of critical spheres.

Definition 7.1: Two admissible configurations are equivalent if and only if the associated
ordered sequences of radii of critical spheres are equal.

The following result is now direct from 5.3.

Theorem 7.2: Let γ1 and γ2 be two admissible curves in the workspace W (l1, . . . , ln)
with the same end-points which are not on the critical spheres. Then the inverse images
of the two curves are diffeomorphic if their associated configurations of labeled critical
points are equivalent.

Remark 7.3: It is clear that one does not actually need the endpoints of the two curves
to be equal, merely that they lie in the interiors of the same annular regions between
adjacent critical radii.

Definition 7.4: A curve γ is monotone if the associated ordered sequence of critical radii
is monotone.

In the case of monotone curves, in order to understand the diffeomorphism type of
the associated inverse image, it is sufficient to assume that the curve is a segment of a ray
from the origin, and we will concentrate on monotone curves - and consequently, segments
on rays from the origin - in what follows.

Example 7.5: Suppose that the base is a prismatic joint, which, for simplicity, we will
assume simply means that the length of the base varies in the closed interval [ln(0), ln(1)].
Then the resulting configuration space will be the inverse image of the line segment
[ln(0), ln(1)] along the positive x-axis.

Example 7.6: Suppose that we are interested in the inverse image of ln along the x-axis,
and suppose that ln is not a critical radius. Then the configuration space C(l1, . . . , ln) is
non-singular and is the boundary of the inverse image of the segment [lm, l1+ l2+ · · ·+ ln].

Likewise, the union of the configuration spaces C(l1, . . . , ln(0)) and C(l1, . . . , ln(1)) is
the boundary of the configuration space described in the first example for the prismatic
joint.
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Example 7.7: When we bootstrap in the plane, and construct the configuration space

C(l1, . . . , ln)

by taking the inverse image of the intersection of the circle centered at ln of radius l1
with the free workspace for (l2, . . . , ln−1) we break the intersection up into two pieces, the
inverse image of the part of the circle above the x-axis and the inverse image of the part
of the circle below it. Both of these are monotone and consequently diffeomorphic. We
have just proved the following theorem:

Theorem 7.8: The configuration space of a closed chain in R2 is the double over the
boundary of the inverse image of a monotone path and hence a segment along the x-axis.

It remains to characterize these inverse images. In what follows we consider the
inverse image of the line segment S along the x-axis from l > 0 to

∑

li, the radius of the
workspace, where l is not a critical value. We also assume that we are in R2 though the
modifications in the argument below for R3 are direct.

Suppose that rI ∈ S, then for each j ∈ I, the j-interval is parallel to the x axis
and points inward. The itervals which are not in I of course point outwards, and leaving
these intervals fixed while freely varying the intervals with i ∈ I results in an annulus or
a disc centered about the point

∑

i6∈I li having exterior radius
∑

i∈I li as the image of the
endpoint.

......
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rI c

Figure 11: c =
∑

i6∈I li

Thus, to each critical value rI in S there is associated a unique sub-coordinate torus, T I ,
in the configuration space, and if J ⊂ I then T J ⊂ T I . Moreover, for each coordinate
subtorus of T I there is a unique J so this subtorus is T J , but these tori do not lie in
f−1(S), instead the images of their endpoints lie in the small disk in Figure 11.

We now indicate how to construct a deformation retraction of the union of the sub-tori
above to a sub-complex of f−1(S).

The angle subtended between the positive x axis and one of these endpoints always
lies between −π

2 and π
2 , and consequently defines a homotopy trivial mapping from this
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sub-torus to the unit circle S1 ∈ C. It follows that we can construct a deformation
retraction of the coordinate inclusion of this torus in the free configuration space to the
inverse image of S by rotating each element by the negative of the angle the endpoint of
the configuration makes with the x-axis. Thus, the entire torus T |I| consisting of points of
the form (τ1, . . . , τn−1) with τi = 0 for i 6∈ I is represented by a torus in the inverse image
of S.

Indeed, these deformation retractions agree on the intersections of the tori associated
to different critical values and give, as claimed, a deformation retraction of the entire union
to f−1(S).

Remark 7.9: The deformation retraction, restricted to each torus separately is a diffeo-
morphism of that torus into S since we can find the angle that the original point made by
looking at one of the edges which is not in I. Moreover, given any two I, J with rI , rJ
both in S, then I ∪ J is not (1, 2, . . . , n − 1). Indeed, if it were then there would be two
complementary subsets of the set of integers {1, . . . , n − 1}, I, and the complement of I,
C(I) = {1, . . . , n − 1} − I among the permissible J with rJ ∈ S. But rC(I) = −rI and
we assume that S is contained in the positive x-axis. Hence, there will be a j 6∈ I ∪ J , so
it follows that the deformation retraction actually is a homeomorphism on the union of
these sub-tori.

If we take the union of these tori, we obtain a cell complex with exactly as many cells
as there are critical points in the inverse image of S. Moreover, the image of the homology
of the original union of sub-tori in the homology of the free configuration space (S1)n−1

is injective and has one independent generator for each critical value in S. Since the
critical points are non-singular, we have accounted for every cell in the cell decompostion
of f−1(S) associated to this Morse function. It follows that the deformation retraction of
this union must be a deformation retract of the entire inverse image. This proves all of
our main result except for the normal bundle data which describes the self-intersections
under Poincaré duality.

§8: The completion of the proofs of 1.5and 1.8

We now consider the normal neighborhoods of these tori in f−1(S). Our assumptions
remain the same as in the previous section.

Lemma 8.1: Let T I be the torus associated to the critical point given by the subset
I ⊂ (1, . . . , n − 1) above, then, in f−1(S), the normal neighborhood of T I is a product
T I × Rj with j = n− 2− |I|.

Proof: Let rI be the critical value,

rI =
n−1
∑

1

li − 2
∑

j∈I

lj

associated to I. Since l, the right hand boundary of the segment S, is not a critical value,
there is an ε > 0 the interval (rI − ε, rI ] contains no other critical points and is contained
in S.

We now look only at f |I by which we mean the mapping

f : (X1, . . . , Xn−1)−−→
∑

liXi
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restricted to the edges lv with v 6∈ I. The inverse image of the interval along the x-axis
(d− ε, d) where d =

∑

j 6∈I lj is an open disc Dn−|I|−2 since the only critical point is at d
and this is clearly an absolute maximum. On the other hand, specifying any configuration
in this disk, any configuration on the deformation of the torus into S, and adding together
gives an element in f−1(S), since the angles are all equal for the edges which are not in I
in the deformed torus. (This is the point where things change somewhat between R2 and
R3, but the modifications are direct.) This proves the lemma.

It remains to determine the structure of the union of two sufficiently small normal
neighborhoods of two tori T I ×Rj(I) and T J ×Rj(J) in f−1(S). We have:

Lemma 8.2: Let rmax =
∑k

1 ls, for a sequence of positive numbers l1, . . . , lk. (Here we
are considering proper subsets of our full set (l1, . . . , ln) and reordering.) Let

( ~X1, . . . , ~Xk) ∈ (S1)k

and set f( ~X1, . . . , ~Xk) =
∑

li ~Xi. (Forward kinematics restricted to the subset.) Let
S = (rmax− ε, rmax) on the x-axis, and f−1(S) = Dk−1, the open disc of dimension k− 1.
Then local coordinates in Dk−1 can be given by choosing any i ∈ {1, . . . , k} and letting
Xi depend on the remaining Xj , j 6= i.

Proof: Write Xi = (cos(θi), sin(θi)). Then up to third order we have that f is given by

f̂(X1, . . . , Xk) =

(

rmax −

k
∑

1

liθ
2
i ,
∑

liθi

)

.

Since all the li > 0 and the condition for being in S is
∑

liθi = 0 up to third order, the
result follows.

¿From this lemma and the preceeding result, the fact that a regular neighborhood of
the union of any two tori is given in the way described in the introduction now follows.
For R3 the argument and conclusion are the same.

§9. Closed chains with constrained points

In a sequel we will consider the structure of subspaces of these configuration spaces
where we require either that there are no self-intersections in the chain or that the chain
does not intersect a forbidden region. In order to do this we need a structure result for
closed chains with a number of constrained interior points. As the key result involves
exactly the same analytic techniques as were developed in §6, we include the conditions
for non-singularity of such subspaces here.

We consider the situation where we also bind r distinct interior points on the chain,
requiring them to be fixed.

Lemma 9.1: The configuration space of all configurations of a closed chain 〈l1, . . . , ln〉
with ln mapping to a fixed segment based at the origin and r points of the chain

{~V1, . . . , ~Vr} ⊂ 〈l1, . . . , ln〉
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required to satisfy f(~Vi) = ~Li, 1 ≤ i ≤ r, is non-singular if and only if it is not possible to
make all the edges between any two of the constrained positions collinear.

Proof: The resulting set of equations has the form:

9.2

n−1
∑

1

li ~Xi = ~Ln

j1−1
∑

1

li ~Xi + k1
~Xj1 = ~L1

...
...

...

jr−1
∑

1

li ~Xi + kr ~Xjr
= ~Lr

with j1 > j2 > · · · > jr. (Note that if 0 < ki < li then the binding point for the ith edge
is on the edge, while if ki = 0 or ki = li the binding point is a vertex. However, it is also
possible for ki to be negative or ki > li in these equations, and, though these last are not
part of the statement of 9.1, the discussion below does not change in these cases. The
Jacobian here has the form

9.3



































2x1 . . . 0 . . . 0 2y1 . . . 0 2z1 . . . 0
...

. . .
...

. . .
...

...
. . .

...
...

. . .
...

0 . . . 0 . . . 2xn−1 0 . . . 2yn−1 0 . . . 2zn−1

l1 . . . lj1 . . . rn−1 0 . . . 0 0 . . . 0
0 . . . 0 . . . 0 l1 . . . ln−1 0 . . . 0
0 . . . 0 . . . 0 0 . . . 0 l1 . . . ln−1

l1 . . . k1 . . . 0 0 . . . 0 0 . . . 0
0 . . . 0 . . . 0 l1 . . . 0 0 . . . 0
0 . . . 0 . . . 0 0 . . . 0 l1 . . . 0
...

. . .
...

. . .
...

...
. . .

...
. . .

...


































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and the reduction above results in triples of the form

9.4





















































2xi 0 0
0 0 0
...

...
...

0 0 0
li ai,1 bi,1
0 ai,2 bi,2
0 ai,3 bi,3
li ai,1 bi,1
0 ai,2 bi,2
0 ai,3 bi,3
...

...
...

0 0 0
...

...
...

0 0 0





















































where the number of non-zero vertical copies of the two vectors is the number of times that
~Xi occurs with non-zero coefficient in the equations above. Consequently, the resulting
variety is non-singular if and only if it is impossible to make all the edges between any
two of the constrained positions colinear, as asserted.
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